

ESRU

LCBE Seminar: The Future is electric heating, but is it

sustainable?

HOME SPACE AND WATER HEATING ASPECTS OF THE SSE SHETLAND NINES PROJECT

Kati Svehla University of Strathclyde Energy Systems Research Unit 27 September 2012

Home space and water heating aspects of the SSE Shetland NINES project

- NINES controllable domestic space and water heating
- UoS ESRU Customer demand forecast model
- NINES trial house monitoring early outcomes
- 4. Simulations and forecasting work in progress

SSE's challenges in Shetland

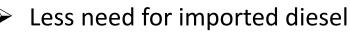
University of Strathclyde Engineering

- Old, diesel fired power station
- High potential for renewables
- Isolated, constrained grid, network stability issues

ESRU

Actively manage the network

Control demand via (heat) storage


http://www.dimplex.co.uk/products/wat er_heating/literature_pdfs_-_Water_Heating.htm

http://www.quantumheating.co.uk/ gallery.php

More reliable, better quality supply

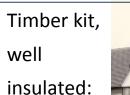
NINES controllable domestic space and water heating A collaborative project

ESRU

NINES controllable domestic space and water heating Rollout scope: 750 houses

Timber kit, low insulation: 58%

ESRU


Traditional stone built: 12%

Block & render, heavy build 11%

Stone conversion, well insulated: 2%

7%

Lightweight, well insulated: 10%

NINES controllable domestic space and water heating Trial houses and heaters

Ε	S	R	U
_	$\mathbf{}$		$\mathbf{}$

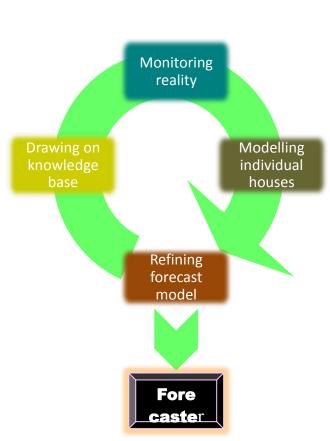
Туре	Number Monitored
Light timber built, sealed and insulated	5 houses 4 house types 2/3 occupancy patterns
Conversion of 1900s stone building	1 house 2 occupancy patterns

Controllable space heaters in living areas & hall:

Input: 4.3-6.3 kW per house total

Output: 2.2-3.2 kW + 3-4.5kW manual boost

Old panel heaters elsewhere: 2-5 kW total


Controllable water heater: 2.6kW + 3kW manual boost

UoS ESRU – Customer demand forecast model ESRU work objectives

ESRU

- How effectively will domestic hot water tanks and electric space heaters store energy?
- What is the impact of different charging schedules?
- Where might there be a risk to customer amenity?
- Forecast domestic demand for space and water heating
 - input to Active Network Management System
 - groups of 100-150 houses
 - varying with time and season

UoS ESRU – Customer demand forecast model Conditions of trial

ESRU

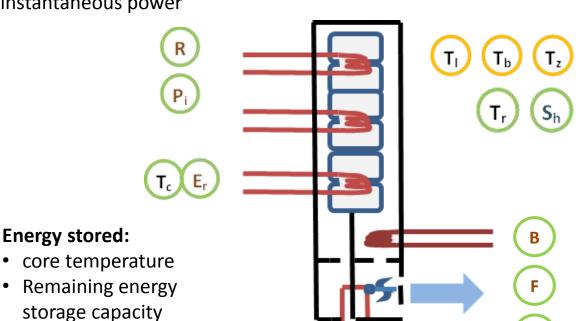
- Normal tariff daily schedules retained
- Central instructions for charging at 15 minute intervals

PLC Data Point	Description	Home 1	Home 2	Home 3	Home 4	Home 5	Home 6
N26:0	IH Day Ahead Schedule 1	2900	0	0	0	0	0
N26:1	IH Day Ahead Schedule 2	2900	0	0	0	0	0
N26:2	IH Day Ahead Schedule 3	2900	5000	6000	5000	5000	4000
N26:3	IH Day Ahead Schedule 4	2900	5000	6000	5000	5000	4000
N26:4	IH Day Ahead Schedule 5	2900	5000	6000	5000	5000	4000
N26:5	IH Day Ahead Schedule 6	2900	5000	6000	5000	5000	4000
N26:6	IH Day Ahead Schedule 7	2900	0	0	0	0	0
N26:7	IH Day Ahead Schedule 8	2900	0	0	0	0	0
N26:8	IH Day Ahead Schedule 9	2900	0	0	0	0	0
N26:9	IH Day Ahead Schedule 10	2900	0	0	0	0	0

- Safety and comfort overrides set centrally
- Space heater controller sets upper temperature for core
 - adaptive control

User controls on space heaters only - timer and thermostat

UoS ESRU – Customer demand forecast model Space heater monitoring


ESRU

Energy in:

scheduled power

Energy stored:

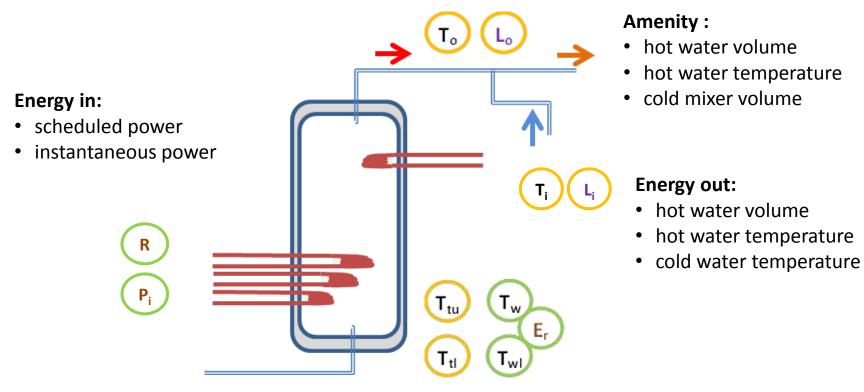
• instantaneous power

Amenity:

- outside air temperature
- room temperature
- thermostat setting
- air intake temperature

Energy out:

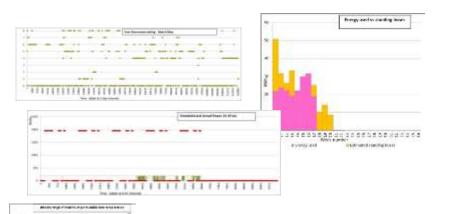
- boost status
- fan status


T_a

• fan duct temperature (7 heaters only)

UoS ESRU – Customer demand forecast model Water heater monitoring

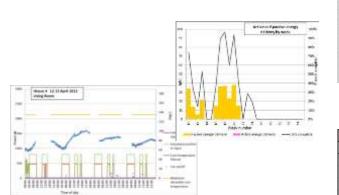
ESRU

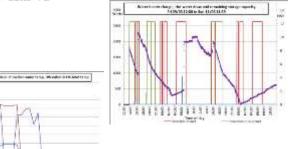

Energy stored:

- Water temperature top & bottom of tank
- Remaining energy storage capacity

NINES trial house monitoring - early outcomes Data, data everywhere

ESRU



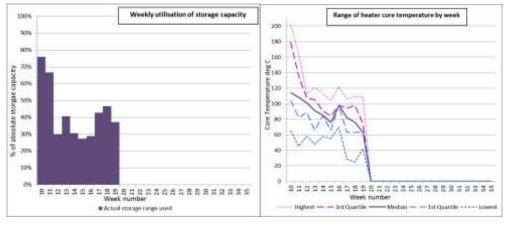

Did note: the patreet. Which II A 11 (1990ar - 1 Apr)

19 devices

12-14 data channels per device

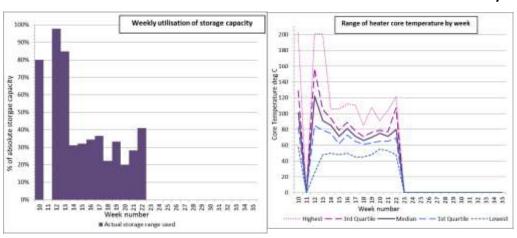
1-5 minute frequency

Street County Special County C



House 2					
		Water	Heater 1 (KI)	Heater 2 (LR)	Heater 3 (HA)
March	2012	47%	30%	12%	47%
April	2012	42%	42%	42%	40%
May	2012	62%	48%	62%	44%
June	2012	0%	0%	0%	0%

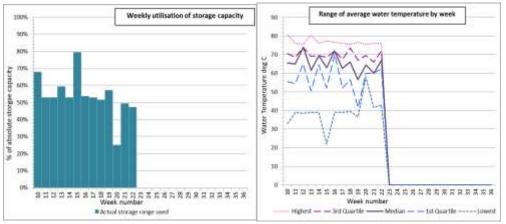
NINES trial house monitoring - early outcomes Utilisation of storage capacity — space heaters


ESRU

Single person, house unoccupied during day

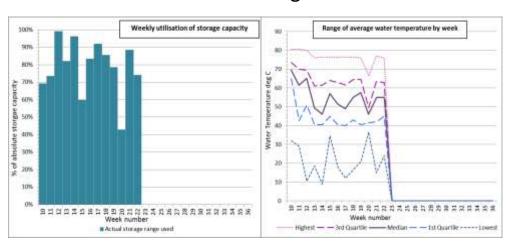
Family, house occupied during day

- 35-40% of capacity used typically
- practical range even smaller
 - narrow 1-3Q temperature band
- spare storage capacity exists
- caveats
 - user comfort (overheating)
 - test houses vs rollout



LH: weekly storage capacity utilisation as % of max RH: range of measured core temperature

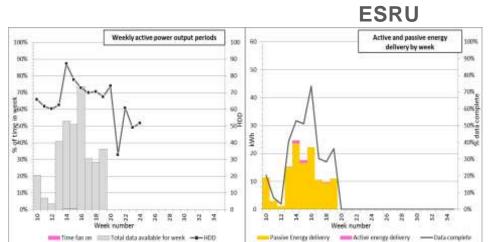
NINES trial house monitoring - early outcomes Utilisation of storage capacity – water heaters



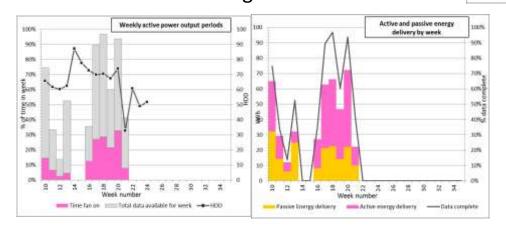
Single person
Out at work during day
Regular use of hot water

Family House occupied during day Irregular use of hot water

- 50-70% utilisation typical
- wider variation between houses
- practical range even smaller
 - narrow 1-3Q temperature band
- spare storage capacity in principle
- caveat
 - variation in hot water use

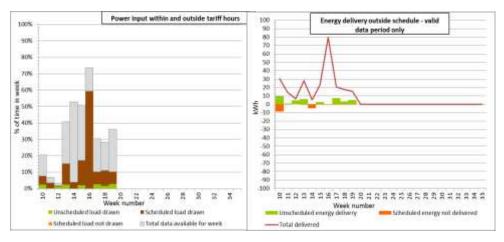


RH: weekly storage capacity utilisation as % of max realistic LH: range of measured core temperature


NINES trial house monitoring - early outcomes Monitoring outcomes — heater output

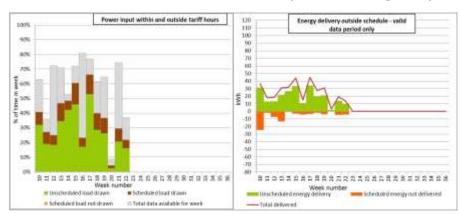
Single person
Out at work all day
Lightweight timber building

Single person
Out at work all day
Converted stone building


- significant % of heat supply is passive in all cases
- highest use of fan is in the smallest (stone) house
- lightweight insulated houses may not need such big heaters

LH: time fan is on in week, relative to total data available and to Heating Degree Days RH: energy output in passive and active (fan assisted) mode

NINES trial house monitoring - early outcomes Monitoring outcomes – controllability



Living room heater Single person, House unoccupied during day

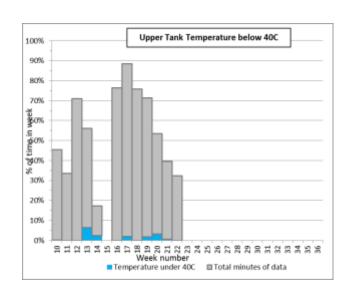
> Water heater Single person, House unoccupied during day

- power drawn outside scheduled hours
 - 20% of time for space heaters
 - up to 70% of time for water heaters
- complex interaction of central, heater and occupant controls
- more investigation needed

LH: amount of time charging within (brown) and outside (green) schedule RH: energy delivered outside schedule (green), scheduled not drawn (orange)

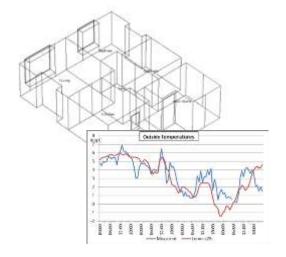
NINES trial house monitoring - early outcomes Impact on occupant amenity

ESRU


House	Average temperature Feb-Mar 2011 (⁰ C)	Average temperature Oct 11-Mar 2012 (°C)
1	21.6	19.4
2	24.2	22.2
3	19.7	21.7
4	17.2	18.9
5	17.1	18.9
6	21.2	20.3

Indoor temperature

- average winter living room temperatures converge after installation
- heaters appear more controllable


Hot water

- top of tank is >40°C almost all the time
- better hot water availability
- but higher standing losses

Simulations and forecasting – work in progress Modelling - calibrating trial houses

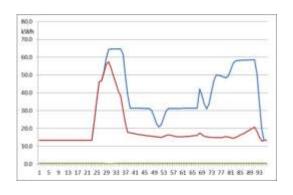
Detailed models of each trial house built in ESP-r

- actual dimensions, construction details
- best guess occupancy & casual gains
- ideal heating assumed

Compare periods where outdoor temperature pattern close to TY

Storage heater models built separately using performance test data

Ultimately: library of typical houses and occupancy profiles



Simulations and forecasting – work in progress Next steps: modelling and forecasting

Individual house & heater models will allow us to

- investigate wider range of conditions than actually encountered
 - house types
 - weather conditions
 - occupant behaviour
- explore possible improvements in control regime
- extrapolate to other regions

Build forecaster from individual profiles:

- synthesise 15-minute demand profiles for groups
- generate real time forecasts from weather outlook
- tool is adaptable to other situations